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A Moment Solution for Waveguide Junction
Problems

HESHAM AUDA, STUDENT MEMBER, IEEE, AND ROGER F. HARRINGTON, FELLOW, IEEE

Abstract — A moment procedure for solving waveguide junction problems
is given using the generalized network formulation for aperture problems.
As an illustration, the procedure is applied to a transverse planar junction
between two uniform cylindrical waveguides. The generalized admittance
network representation of the junction is first obtained. Its scattering
matrix representation is then deduced from the former representation. A
discussion shows that the conservation of complex power technique, which
handles the same class of junctions, is a specialization of the moment
procedure.

1. INTRODUCTION

PROBLEM of practical importance in electromag-

netic analysis is the scattering problem at waveguide
junctions. This problem is considered solved once an ade-
quate representation of the junction is found. For this
reason, a considerable amount of effort has been expended
in devising various techniques (both analytical and numeri-
cal) to find such representations. The purpose of this paper
is to present a moment solution for the waveguide junction
problem. The procedure used is based on the generalized
network formulation for aperture problems [1]. To il-
lustrate the solution procedure, we apply it to the problem
of two infinitely long uniform cylindrical waveguides with
a transverse planar junction. Fig. 1 shows the problem at
hand. Two different representations of the junction are
obtained. The generalized network representation of the
junction is first obtained assuming an arbitrary incident
field in guide 4. The scattering matrix representation of the
junction is then deduced from the Galerkin specialization
of the generalized network representation. Other moment
solutions can be found in the works of Wu and Chow [2]
and Chow and Wu {3].

It is the emphasis in this paper to present the moment
procedure so that all the results and different relationships
are clearly seen. The simple example worked out is particu-
larly chosen to illustrate the relation of the moment proce-
dure to some familiar techniques often used in similar
situations as is pointed out in the discussion.

II. THE GENERALIZED NETWORK REPRESENTATION
OF THE JUNCTION

Let the excitation of the junction be a source which
produces a multimode field. This source, assumed to be
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Fig. 1. Two infinitely long uniform cylindrical waveguides opening into

each other through an aperture S.

located in guide A, generates outward traveling modes
whose amplitudes and phases are not influenced by reflec-
tions from the junction. Because of the presence of the
junction, part of the incident field is reflected into guide A4,
while the rest of it is transmitted into guide B. The total
field transverse to the z-direction in both guides can be
expressed in modal form as [4, sec. 8-2]

Zcie_ymzeai + ZaierZeai (0 > Z)
4 i
Et = —
Y be Mi%e,, (z>0)
i
thYatera'Zuz X eai
i
Ht =\ ZaiYalerzuz X € (O > Z)

i
ththe_‘Yblzuz Xebt (Z>0)' (1)

All the modes TE and TM are included in the summation.
In (1), ¢,, a,, and b, are complex coefficients of the ith
incident, reflected, and transmitted modes, respectively. v,,
is the modal propagation constant of the /th mode in guide
A

A 2
jﬂi=j,€a l—.(x_a_) (}\a1>>\a)
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Here «, is the wave number of the medium filling guide 4,
and «, is the ith mode cutoff wavenumber; A, and A ; are
the corresponding wavelengths. Y, is the modal character-
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istic admittance of the ith mode in guide 4

i (TE modes)
Jwh,
Yaz = wa (3)
—e (TM modes).
Yai

The corresponding parameters for guide B are similarly
defined. Finally, the modal vectors, e ; in guide 4 and e,
in guide B, form sets of orthonormal real vectors, viz.,

1 (i=j)
foeq,-eqjds={O J

(i=j).

The integration is taken over the cross section of guide
Q(Q {4, B)). (In (4), g €{a, b} is understood, but is
suppressed hereafter to avoid unnecessary writing.)

As a first step toward deriving the generalized network
representation of the junction, the equivalence principle [4,
sec. 3-5] is used to divide the problem into two parts. Let
the source produce the exciting field when S is covered by
a perfect conductor. This field, sometimes referred to as
the generator field, is denoted (E,, H,). The equivalence
principle states that the field in guide A4 is identical with
(E,, H,) plus the field produced by the magnetic current
sheet

(4)

M=u,XE|,_ )
over S when it is covered by a perfect conductor. The field
in guide B is then identical with the field produced by a
magnetic current sheet — M over S when it is covered by a
perfect conductor. Fig. 2 shows the equivalent situations.
The transverse field produced in guide 4 by M, denoted
(E, (M), H,(M)), and that produced in guide B by — M,
denoted (E,(— M), H,(— M)), will have the same form as
(1), except that there is no exciting field. Hence, the total
z-transverse field, equivalént to (1), will be

E c,e—n,zem - Z czeymzeai
! :

E= + Y d;eve,, (0>2)
i
Y be e, (z>0)
1
chyllle~7a’zuz X eal + ch},ale.y‘"zuz >< eal
H i
go| -Tdt.ewuxe, (0>2)
i
2 bY, e U Xe,, (z>0).
1

(6)
Here c,, d;, and b, are the respective coefficients of the ith

incident mode, the /th mode produced by M, and the ith
mode produced by — M. M can be evaluated from (5) and
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(a) The equivalent situation for guide A. M exists only on S. (b)
The equivalent situation for guide B. — M exists only on S.

Fig. 2.

(6) as
M= u, X Ea(M)|z=0 = Zdtuz X eai

and

M=uzXEb(_M)Iz=O=Zbluzxebz’ onS. (7)
i

The placement of magnetic current sheets + M over § in
guide A and — M over S in guide B ensures the continuity
of E, across S. The continuity of H, across S, however,
requires that

rrat
1

ZZC Y, u, X €hi= Zdzyazuz X €, + ththuz X €
i 1

onS. (8)

If (8) were satisfied exactly, we would have the true solu-
tion. To obtain an approximate solution, we apply the
method of moments [5]. This is the second and final step
toward deriving the generalized network representation of
the junction.
Let {M;}, j=1,2,---,N, be a set of real-valued expan-
sion functions, and put
N
M= T VM,

(9)

where V), are complex coefficients to be determined. Since
the set {#, Xe,;}, j=1,2,---, is complete [6, sec. 5.6], a
finite subset of the lower order modes can be used in (8) to
approximate the H, field in guide Q (Q €{4, B)}). Hence-
forth, the number of modes in the modal expansion is
assumed to be L. (The results optained would, neverthe-
less, hold, had the number of modes in guide A been
different from that in guide B.) Substituting (9) into (7), we

obtain ‘

N L

Y VM= ¥ du, Xe,
j=1

1=1
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and
N L ‘
Z KM]= Z biuzxebz' (10)
i=1 1=1
Scalarly multiplying the first equation of (10) by u, X e,
and the second by u, X e, , k=1,2,-- -, L, and integrating
over the corresponding guide cross sections, we obtain

é’:l V}ffAIWj-uZXea,cds=iZ:d,ffAuZXea,‘-uzXeaids

1M1=

lijfBJ\'Ij-uz><e,ma?s= ZL: bifLuzXeb,‘-uzXeb,ds.

J 1=1

Because of the mode orthogonality relationship (4), all the
terms in the summation on the right vanish except the i =«
term. Hence

N
d;= Z VjHaxj
/- (i=1,2,---,L) (1)
bi= Z V]Hbt_]
ji=1
where
Hqij=fLM,-uZXeq,ds (0e{4,B)). (12)

The integrals over the different guide cross sections in (12)
are replaced by one over S since M, exists only in this
region. Next, define a symmetric product

(F,G>=ffSF-Gds (13)

and a set of real-valued testing functions (W)}, j =1,2,- - -,
N. Taking the symmetric product of (8) with each testing
function W,, and using (11), we obtain the set of equations

L L N
2 Z czYaiu/:lix= Z VJHm'j YatVVain
i=1 i=1\j=1
L N
+2l X V;Hbij)ybinin (k=1,2,---,N) (14)
1=1\y=1

where

W= [[ Wen X eyds  (Q€(4,B)). (19)
This set of equations can be put in matrix form as follows.

Define the mode-coefficient vectors

¢=[clrx (16)

J= [dz]LX1=HaI7 (17)
and

b= [bz]LX1=HbI7 (18)

where (17) and (18) follow from (11). Here V is the
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Fig. 3. The generalized network interpretation of (21).
coefficient vector
V= [ v ] N X1 ( 19)

and H, and H, are matrices given by

H=[Hy, ], »= [ffSMju X eq,ds] (Qe(4,B)).
(20)
The system of equations (14) will then have the form
[Y.+7]v=T (21)
where the generalized admittance matrices, Y, of guide 4
and Y, of guide B, are given by

Yq = [Yqu] NXN WqTYqu

(0€{4,B)) (22)

and the source vector I is given by
= [L]yxi=2W]Y,C. (23)

In (22) and (23), W, is exactly the same as H, except for W,
replacing M, Y, is a diagonal matrix of the modal char-
acteristic admittances of guide Q (Q€{4,B})), and T
denotes matrix transpose.

By (21) we have finally arrived at the generalized net-
work representation of the junction. Equation (21) can be
interpreted as two generalized networks ¥, and Y, in
parallel with the current source I, a situation shown in Fig.
3. The junction can also be completely described by its
scattering matrix representation. This representation can
be deduced almost immediately from the generalized net-
work representation, as will be seen shortly. First, however,
we prove that the continuity of complex power flow across
the junction is preserved under its generalized network
representation specialized to the Galerkin case. The proof
essentially follows the outline given by Mautz and
Harrington [7].

III. ConTINUITY OF COMPLEX POWER FLOW
) ACROSS THE JUNCTION

The continuity of complex power flow across the junc-
tion requires that the total complex power on both sides of
the junction be equal. The complex power transmitted
through the junction into guide B is basically

P,=ffSE><H*-uzds (24)

where the asterisk denotes complex conjugate. Substituting
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from (5), (24) becomes
P =ffSM-H*ds. (25)

Equation (25) involves only the tangential component of H
over S in guide B. Thus, on substituting from (6) and using
(9), we get

N L
P=3Y VY Y *( M, u,Xe ds)
' =1 gy=1 b /'[S ”

which can be put in matrix form as
P,=VIHIY}HV. (26)
In (26), the superscript H denotes conjugate transpose, and
(18) was used to replace b by H,V. The total complex
power entering the junction from guide 4 can be expressed
in the form (25). In this case, the integral involves the
tangential component of H over S in guide A. Thus, on
substituting from (6) and using (9), we get
N

Pin= Z

=1

L
Vv Y*(2¢* — d¥ M -u,xe, d
ljgl aj( c_] j)/[s U eaj 5

which can be written in matrix form as

= 28HYHY —VAHTY H V. (27)
Here (17) was used to replace d by Hal7. For the power
flow across the junction to be continuous, P, must be equal

to P,,. Consider the Galerkin case where {M;}={W},
j=12,--+ N. Then

H,=W, (Q&€{4,B))
and on using (22) and (23), (26) and (27) become
P,=ViYHV

(28)
and

P, ="V -VHYHY, (29)
The equality of P, and P, is therefore guaranteed because
of (21). Since a finite number of modes is used in expand-
ing the field in guides 4 and B, P, and P,, as given
respectively by (29) and (28), are only approximations to
the power on both sides of the junction. Because of mode
completeness, as the number of modes tends to infinity, P,

and P, converge to the actual powers. The continuity of
power flow across the junction then becomes exact.

IV. THE SCATTERING MATRIX REPRESENTATION OF
THE JUNCTION

Following Montgomery et al. [8, sec. 5-14], we define the
scattering matrix of the junction of two waveguides 4 and

B to be the matrix
S S
S = [ aa ab]
Sba Sbb

where the ijth element of S,, gives the amplitude of the ith
mode in guide Q due to the jth incident mode of unit
amplitude in guide Q ((Q,0) = {4, B)).

The scattering submatrices S,, and S,, can be extracted

(30)
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from the analysis in Section II specialized to the Galerkin
case. Let @ be the coefficient vector of the reflected modes,
viz.,
a= [az]Lx1- (31)
We have, by (1) and (6)
d=d-¢
and by (17), (21), and (23)
i=(2H,[Y,+Y,] 'HTY,~U)C.
Here U is the identity matrix. It also follows from (18),
(21), and (23) that
b= (28,[%,+7,] 0], ).
Thus, the scattering submatrices S,, and S,, are given by
Sua=2H, [V, + 7] H]Y,~U (32)
and
Spa=2H,[Y, +¥,] ' H Y,
As a matter of convenience, (33) is rewritten to read
Spa=H(Seq +U)
where H is an L by L matrix satisfying
H,=HH, (35)

or, upon multiplying from the right by V and using (17)
and (18)

(33)

(34)

b=Hd. (36)

The matrix H can be evaluated as follows. Scalarly multi-
ply the second equation of (7) by u_Xe,;, j=1,2,---,L,
and integrate over the cross section of guide B to get

f[gM-uzXebjds=bj

Using the first equation of (7) to substitute for M above,
we get

ZL:d,(/j;uzXeai-uZXebjds)=bj

1=1

(j=1,2,---,L).

(j=1,2,---,L).

(37)

H is therefore the matrix

H= [H,j]LxL= [/fguz Xeb,-uzXeajds]. (38)

It can readily be shown in a similar way that
d=H"p. (39)
The scattering submatrices S,, and S, are due to an
incident field in guide B. This situation is reciprocal to the
one in Section II. Since H,, H,, W,, and W, depend only
on the functional form of the different expansion and

testing functions, keeping these functions unchanged, we
get

G, +¢,= HY, (40)
b=HY, (41)
RASAIADS (42)
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and
I_; =20 Y,E, (43)

in analogy with (17), (18), (21), and (23), respectively. The
vectors 4,, C,, b,, I,, and V, in the reciprocal case bear the
same meanings as do their counterparts d, ¢, b, I, and V.
Specializing to the Galerkin case, it immediately follows
from (30), (41), (42), and (43) that

S, =2H,[Y, +T,] 'H]Y,

or, upon using (33)

(44)

Sup =Yg 'S5, Y.
Finally, by (30), (35), (40), and (41)
(Sbb + U)Er = HSabE .

r

(45)

Thus
Sy, =HS,, —U.

(46)

V. AN EXAMPLE

Consider the system of two waveguides shown in Fig. 1,
with the aperture S being the whole cross section of guide

A, and let{M;} ={W;}={u, Xe, },j=12,---,N(N=L).
Then
H,=W,=U (47)
H,=W,=H (48)
Y=Y, (49)
Y,=H"Y,H (50)
and
I=2vz. (51)

The scattering submatrix S,, is then given by
S,e= (Y, + H'Y,H) (Y,- HTY,H).  (52)

The other submatrices are given by (34), (45), and (46).
Setting {e,,;} = {e;}, j=1,2,-- -, N, it is an easy matter to

show that S, , S,,, S,;, and S,, are given by
Saa=(Ya+Yb)—l(y;1—Yb) (53)
S,0= 2, +Y,)7'Y, (54)
Sp=2Y,+7,)7'Y, (55)
and

Spp =S40 = (Y; + Yb)—l(Yb - Ya)

a result which should have been expected.

(56)

V1. DiscussioN

A moment solution for waveguide junction problems is
given in this paper. The procedure, based on the gener-
alized network formulation for aperture problems, is ap-
plied to a transverse planar junction between two uniform
cylindrical waveguides. It is clear from the analysis in
Section II that a judicious choice of the expansion func-
tions for the equivalent magnetic current is a key to the
success of the procedure. For some configurations, such as
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the one considered in Section V, the choice is quite obvi-
ous. For junctions with arbitrarily shaped apertures, trian-
gular patches with appropriate functions defined on each
triangle may be used to closely approximate the current on
the aperture. Junctions with arbitrary apertures can there-
fore be treated in a systematic manner. Furthermore, the
procedure can be readily extended to handle junctions with
more than one aperture. Another important feature of the
moment procedure is that the scattering submatrices can be
expressed in terms of matrices each of which depends on
the modes of only one waveguide, Thus, for a given junc-
tion, different waveguides can be considered one at a time.
The scattering submatrices are then obtained for any re-
quired combination, which adds another measure of flexi-
bility. Computer codes that take into consideration these
points are now under preparation.

The moment procedure is straightforward and rather
general. In the case of the example in Section V, with the
choice of the expansion and testing functions there, it
reduces to the familiar mode-matching technique. In a
recent publication [9], Safavi-Naini and MacPhie deter
mined the scattering matrix for the junction configuration
of the example in Section V by employing the principles of
conservation of complex power and mode matching across
the junction. Apart from multiplying factors due to the
mode normalization used in the moment procedure, the
scattering matrices obtained are identical. In Section III,
the principle of conservation of complex power across the
junction was seen to be preserved under its generalized
network representation. As a matter of fact, the complex
power technique can be regarded as a specialization of the
moment procedure, and is probably better viewed in this
context.
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Dielectrically Loaded Corrugated
Waveguide: Variational Analysis of a
Nonstandard Eigenproblem

ISMO V. LINDELL, SENIOR MEMBER, IEEE, AND ARI H. SIHVOLA, STUDENT MEMBER, IEEE

Abstract —Motivated by simple fabricability, the dielectrically loaded
corrugated waveguide is analyzed applying the theory of nonstandard
eigenvalues and variational principles recently presented by one of the
authors. The eigenvalue parameter of this problem is the boundary suscep-

tance of the corrugated surface, which choice is seen to lead to a simple '

functional. The functional is tested for the air-filled corrugated guide, and
good accuracy for simple ‘test functions is observed. Dispersion relation for
the loaded corrugated guide is calculated together with the field pattern for
quasi-balanced operation and estimates for the dielectric loss. The method
presented here also appears to be applicable in other waveguide problems
where inhomogeneous material is involved.

I. INTRODUCTION

'"HE CORRUGATED WAVEGUIDE has proven use-

ful for different slow-wave structure applications and
for radiating systems requiring rotational symmetry of the
power radiation pattern [1]. One of the drawbacks of the
corrugated structure is its tedious and costly fabrication. A
new method of fabrication was, however, recently sug-
gested by Tiuri,! which is quite simple: A dielectric rod is
put in a lathe, thin grooves are made on the outside, and
the outer surface is metallized. To reduce losses, a hole can
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be drilled on the axis and we have a dielectrically loaded
corrugated waveguide. We are concerned here about the
analysis of such a structure.

The conventional air-filled corrugated waveguide can be
conveniently analyzed in terms of special functions for the
circular cylindrical geometry. The additional dielectric in-
terface, however, makes this approach very complicated.
So, a variational method is attempted instead. The eigen-
value problem, however, is not of the standard from Lf =
AMf, Bf =0, but of the more general form L(A)f =0,
B(A\)f =0, i.e., the eigenvalue parameter A does not appear
in the differential equation system in linear form, and it
might also be present in the boundary conditions. This
more general form of an eigenvalue problem was called a
nonstandard eigenvalue problem in recent studies [2], [3],
where a variational principle for such problems was also
formulated. This method will be applied here. The eigen-
value parameter may be chosen freely among all the
parameters of the problem. A stationary functional results
if the following functional equation can be solved for the
eigenvalue parameter A: ‘

where the inner products (-, -),(:,-), are defined in the
domains of the operators L and B, respectively.
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