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A Moment Solution for Waveguide Junction
Problems

HESHAM AUDA, STUDENT MEMBER, IEEE, AND ROGER F. BARRINGTON, FELLOW, IEEE

Abstract —A moment procedure for solving wavegnide junction problems
is given using the generalized network formulation for aperture problems.
As an iffustration, the procedure is applied to a transverseplanar junction
between two mdform cylindrical wavegnides. The generafiied admittance

network representation of the junction is first obtained. Its scattering

matrix representation is then dednced from the former representation. A
discussion shows that the conservation of complex power teefmique, which

handles the same class of junctions, is, a specialization of the moment
procedure.

I. INTRODUCTION

A PROBLEM of practical importance in electromag-

netic analysis is the scattering problem at waveguide

junctions. This problem is considered solved once an ade-

quate representation of the junction is found. For this

reason, a considerable amount of effort has been expended

in devising various techniques (both analytical and numeri-

cal) to find such representations. The purpose of this paper

is to present a moment solution for the waveguide junction

problem. The procedure used is based on the generalized

network formulation for aperture problems [1]. To il-

lustrate the solution procedure, we apply it to the problem

of two infinitely long uniform cylindrical waveguides with

a transverse planar junction. Fig. 1 shows the problem at

hand. Two different representations of the junction are

obtained. The generalized network representation of the

junction is first obtained assuming an arbitrary incident

field in guide A. The scattering matrix representation of the

junction is then deduced from the Galerkin specialization

of the generalized network representation. Other moment

solutions can be found in the works of Wu and Chow [2]

and Chow and Wu [3].

It is the emphasis in this paper to present the moment

procedure so that all the results and different relationships

are clearly seen. The simple example worked out is particu-

larly chosen to illustrate the relation of the moment proce-

dure to some familiar techniques often used in similar

situations as is pointed out in the discussion.

II. THE GENERALIZED NETWORK REPRESENTATION

OF THE JUNCTION

Let the excitation of the junction be a source which

produces a multimode field. This source, assumed to be
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Fig. 1. Two infinitely long uniform cylindrical waveguides opening into
each other through an aperture S.

located in guide A, generates outward traveling modes

whose amplitudes and phases are not influenced by reflec-

tions from the junction. Because of the presence of the

junction, part of the incident field is reflected into guide A,

while the rest of it is transmitted into guide B. The total

field transverse to the z-direction in both guides can be

expressed in modal form as [4, sec. 8-2]

[

~cie-’”’zeai + ~aieya’zeai (O>z)
i

‘t= ~bie-Yb)ze,i (Z>o)
i

, Zqya,e-’”zuz X eai

1’~,=:~aiya,ey.z~zx eai (O>z)

~i,Yb,e ‘ybIzuz X eb, (Z>o). (1)
1

All the modes TE and TM are included in the summation.
In (1), c,, a,, and b, are complex coefficients of the ith

incident, reflected, and transmitted modes, respectively. y=,

is the modal propagation constant of the i th mode in guide

A

[

mAa 2
j/ii = j~a 1–G (Aal> Aa)

yai =

(()
(2)

2

fX1=Kai 1– # (Aa>Aa,).
a

Here Ka is the wave number of the medium filling guide A,
and Kai is the i th mode cutoff wavenumber; A. and A.i are

the corresponding wavelengths. Yai is the modal character-
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istic admittance of the i th mode in guide A

F
Yoi

(TE modes)
-i~P.

Ya, =
juca

(3)

(TM modes),
Yal

The corresponding parameters for guide B are similarly

defined. Finally, the modal vectors, eai in guide A and e~l

in guide B, form sets of orthonormal real vectors, viz.,

Ii {
1 (i=j)

eq, ”eql ds =
o (i*j).

(4)
Q

The integration is taken over the cross section of guide

Q(Qs {A, ~}). (In (4), q G {a, b} is understood, but is
suppressed hereafter to avoid unnecessary writing.)

As a first step toward deriving the generalized network

representation of the junction, the equivalence principle [4,

sec. 3-5] is used to divide the problem into two parts. Let

the source produce the exciting field when S is covered by

a perfect conductor. This field, sometimes referred to as

the generator field, is denoted (Eg, Ifg). The equivalence

principle states that the field in guide A is identical with

(Eg, lfg) plus the field produced by the magnetic current

sheet

M= Z/z x EJZ=O (5)

over S when it is covered by a perfect conductor. The field

in guide B is then identical with the field produced by a

magnetic current sheet – ill over S when it is covered by a

perfect conductor. Fig. 2 shows the equivalent situations.

The transverse field produced in guide A by &f, denoted

(Ea(iW), Efa(ikf)), and that produced in guide B by – ill,

denoted (E~( – M), Ef~( – iW)), will have the same form as

(l), except that there is no exciting field. Hence, the total

z-transverse field, equivalent to (l), will be

1
~C,e-’.Izea, - ~c,eyazeai

1 z

Et= + ~ diey”’zeai (O>z)
i

(Z>o)

1
~c,Yale-y.zuz X ea, + ~CzYaley~Izu= X eat
z

H,= - xdiya,e’~”~zX eai’ (O>z)
i

\
~b,Y,ie ‘Yb,zuz X ebi (Z>o).
1

(6)

Here c1, d,, and b, are the respective coefficients of the i th

incident mode, the i th mode produced by Al, and the i th

mode produced by – ill. M can be evaluated from (5) and

+-+Z
(a)

+--z

(b)

Fig. 2. (a) The equivalent situation for guide A. M exists only on S. @)
The equivalent situation for guide B. – M exists only on S.

(6) as

M=uz XEa(M)/z.o = ~d,uz Xeai
i

and

M=uzx Eb(– M)lz.o=xb, u,x%,, on S. (7)

The placement of magnetic current sheets + M over S in

guide A and – M over S in guide B ensures the continuity

of Et across S. The continuity of Hr across S, however,

requires that

If (8) were satisfied exactly, we would have the true solu-

tion. To obtain an approximate solution, we apply the

method of moments [5]. This is the second and final step

toward deriving the generalized network representation of

the junction.

Let {lfj}, j=l,2,. o-, N, be a set of real-valued expan-

sion functions, and put

M= ; TM, (9)
j=l

where ~ are complex coefficients to be determined. Since

the set {u= X eqj}, j = 1,2, -0., is complete [6, sec. 5.6], a

finite subset of the lower order modes can be used in (8) to

approximate the Ht field in guide Q (Q = {A, B}). Hence-

forth, the number of modes in the modal expansion is

assumed to be L. (The results obtained would, neverthe-

less, hold, had the number of modes in guide A been

different from that in guide B.) Substituting (9) into (7), we

obtain

N L
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and

N L

j=~ ,=1

Scalarly multiplying the first equation of (10) by Uj x ea.,

and the second by u, x ebK, K = 1,2,. ... L, and integrating

over the corresponding guide cross sections, we obtain

Because of the mode orthogonality relationship (4), all the

terms in the summation on the right vanish except the i = K

term. Hence

N

- di = ~ JjHa,j
j=]

N

I

(i=l,2,...,L) (11)

bi = ~ ~HbzJ
j=]

where

Hqij =
JJ

Ml. u= x eq,ds
s

(QG{~>~}). (u)

The integrals over the different guide cross sections in (12)

are replaced by one over S since &Zj exists only in this

region. Next? define a symmetric product

(F, i3)=~&Gds (13)

and a set of real-valued testing functions { Wj}, j = 1,2,. ...

N. Taking the symmetric product of (8) with each testing

function vi, @d using ( 11), we obtain the set of equations

where

W&= uWK.u= X eqids (Q G{ A,B}), (15)
s

This set of equations can be put in matrix form as follows.

Define the mbde-coefficient vectors

~= [C1l LX1

d=[d, ]. X,= Ha;

and

;=[bZ]LX1=HbF

where (17) and (18) follow from (11).

(16)

(17)

(18)

Here ~ is the

Fig.

+
v,

[7,]

+
v“

3. The generalized network interpretation of (21).

coefficient vector

(19)

and Ha and H~ are matrices given by

1 [LIM.uzxeqLdsHq=[Hqij ~xN= S J 1 (Q G{ J,~}).

(20)

The system of equations (14) will then have the form

[~+~];=i (21)

where the generalized admittance matrices, ~a of guide A

and ~b of guide B, are given by

1E=[~gz~~~,7y, , , (Q G{ A, B}) (22)= WTY H

and the source vector ~is given by

i= [1, ] ~ ~ , = 2waTYa2’. (23)

In (22) and (23), Wqis exactly the same as Hq except for Wj
replacing Mj, Yg is a diagonal matrix of the modal char-

acteristic admittances of guide Q (Q = {A, B}), and T

denotes matrix transpose.

By (21) we have finally arrived at the generalized net-

work representation of the junction. Equation (21) can be

interpreted as two generalized+ networks ~~ and ~~ in

parallel with the current source 1, a situation shown in Fig.
3. The junction can also be completely described by its

scattering matrix representation. This representation can

be deduced almost immediately from the generalized net-

work representation, as will be seen shortly. First, however,

we prove that the continuity of complex power flow across

the junction is preserved under its generalized network

representation specialized to the Galerkin case. The proof

essentially follows the outline given by Mautz and

Barrington [7].

III. CONTINUITY OF COMPLEX POWER FLOW

ACROSS THE JUNCTION

The continuity of complex power flow across the junc-

tion requires that the total complex power on both sides of

the junction be equal. The cimpiex power
through the junction into guide B is basically

P*=
JJ

ExH*, uzds
s

where the asterisk denotes complex conjugate.

transmitted

(24)

Substituting
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from (5), (24) becomes from the analysis in Section II specialized to the Galerkin

case. Let ii be the coefficient vector of the reflected modes,

P,= [/k H*ds. (25) viz.,
J Js

ii’= [a, ]~xl. (31)
Equation (25) involves only the tangential component of H
over S in guide B, Thus, on substituting from (6) and using We have, by (1) and (6)

N L

(

P,= ~ ~ ~ Y~b~ //MI SUzx eblds
)

and by (17), (21), and (23)

,=1 ~=1 s ii= (2 Ha[Fa + Fb]-’Ha=Ya – up’.

which can be put in matrix form as Here U is the identity matrix. It also follows from (18),

P,= ?HH:Y;H@. (26) (21), and (23) that

In (26), the superscript H denotes conjugate transpose, and

(18) was used to replace ~ by H~~. The total complex

power entering the junction from guide A can be expressed

in the form (25). In this case, the integral involves the

tangential component of H over S in guide A. Thus, on

substituting from (6) and using (9), we get

which can be written in matrix form as

Pin = 2ZHY:Haf– ~HH~Y:Ha~. (27)

Here (17) was used to replace ~ by Hap. For the power

flow across the junction to be continuous, P, must be equal

to P,n. Consider the Galerkin case where {&fj} = {~},

j=l,2,. ... Th enen

Thus, the scattering submatrices S.= and S~a are given by

saa=2Ha[~+ rb]-’H:Ya–u (32)

and

sba=2Hb [~+ Fb]-’H:Ya. (33)

As a matter of convenience, (33) is rewritten to read

S~a=H(Saa+U) (34)

where H is an L by L matrix satisfying

H~ = HHa (35)

or, upon multiplying from the right by ~ and using (17)

and (18)

~= Hi (36)

Hq=w, (Q E{ A, B}) The matrix H can be evaluated as follows. Scalarly multi-

ply the second equation of (7) by u= x ebj, j = 1,2,. ... L,

and on using (22) and (23), (26) and (27) become and integrate over the cross section of guide B to get

P,= ?JJFbHF (28)

//
ikf. u= x ebJds= b] (j=l,2,...,L).

and s

Pti = YJJV– Qffq’ffe (29) Using the first equation of (7) to substitute for ikl above,

we get
The equality of P, and Pin is therefore guaranteed because ~

of (21). Since a finite number of modes is used in expand- ~ d (~~
)

u= X eai. uz Xeb~ds = b, (j=l,2,...,L).
ing the field in guides A and B, P,n and Pl, as given

1
~=1 s

respectively by (29) and (28), are only approximations to (37)
the power on both sides of the junction. Because of mode

completeness, as the number of modes tends to infinity, P,n
H is therefore the matrix

and Pt converge to the actual powers. The continuity of
[J.1 1H=[H,J]LXL= su, xeb, ”uz Xea, ds .power flow across the junction then becomes exact.

(38)

IV. THE SCATTERING MATRIX REPRESENTATION OF
It can readily be shown in a similar way that

THE JUNCTION ~= HT;. (39)

Following Montgomery et al. [8, sec. 5-14], we define the

scattering matrix of the junction of two waveguides A and

B to be the matrix

[1s Sab
s= s“” s

ba bb

(30)

where the ijth element of Sqogives the amplitude of the i th

mode in guide Q due to the jth incident mode of unit

amplitude in guide Q ({Q, 0} = {A, B}).

The scattering submatrices Saa and S~~ can be extracted

The scattering submatrices Sa~ and S~~ are due to an

incident field in guide B. This situation is reciprocal to the

one in Section II. Since Ha, H~, Wa, and W~ depend only

on the functional form of the different expansion and

testing functions, keeping these functions unchanged, we

get

iir + E“ = Hbfr (40)

< = Ha~ (41)

(42)
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and

~ = 2wbTYbzr (43)

in analogy with+ (l~), (18), (21), and (23), respectively. The

vectors d,, ?,, b,, 1,, and ~, in the reciprocal c~se+bear th$

same meanings as do their counterparts ii, E, b, 1, and V.

Specializing to the Galerkin case, it immediately follows

from (30), (41), (42), and (43) that

Sab = 2Ha[Fa + Yb] -’H;Yb (44)

or, upon using (33)

Sab = Ya- !S~Yb . (45)

Finally, by (30), (35), (40), and (41)

(%+ f-J)2, = HSa&..

Thus

S~~ = HSa~ – U. (46)

V. AN EXAMPLE

Consider the system of two waveguides shown in Fig. 1,

with the aperture S being the whole cross section of guide

A, and let {iklj}={~. }= {u= xeaJ},j=l,2,. o., IV(N= L).

Then

Ha= Wa=U (47)

H~=W~=H (48)

~=Ya (49)

~~ = HTY~H (50)

and

i= 2Yaz. (51)

The scattering submatrix S== is then given by

S.= = (Ya + HTY~H)-l(Ya – HTY~H). (52)

The other submatrices are given by (34), (45), and (46).
Setting {eaj} = {ebj}, ~ = 1,2,. ... N, it is an easy matter to

show that Saa, S~a, Sa~, and S~~ are given by

saa=(Ya +Yb)-’(Ya– Yb) (53)

s~a=2(Ya+Yb)-’Ya (54)

sab=2(Ya+Yb)-’Yb (55)

and

s~~= –Saa= (Ya+Yb)-l(Yb– Ya) (56)

a result which should have been expected.

VI. DISCUSSION

A moment solution for waveguide junction problems is

given in this paper. The procedure, based on the gener-

alized network formulation for aperture problems, is ap-

plied to a transverse planar junction between two uniform

cylindrical waveguides. It is clear from the analysis in

Section II that a judicious choice of the expansion func-

tions for the equivalent magnetic current is a key to the

success of the procedure. For some configurations, such as

519

the one considered in Section V, the choice is quite obvi-

ous. For junctions with arbitrarily shaped apertures, trian-

gular patches with appropriate functions defined on each

triangle may be used to closely approximate the current on

the aperture. Junctions with arbitrary apertures can there-

fore be treated in a systematic manner. Furthermore, the

procedure can be readily extended to handle junctions with

more than one aperture. Another important feature of the

moment procedure is that the scattering submatrices can be

expressed in terms of matrices each of which depends on

the modes of only one waveguide. Thus, for a given junc-

tion, different waveguides can be considered one at a time.

The scattering submatnces are then obtained for any re-

quired combination, which adds another measure of flexi-

bility. Computer codes that take into consideration these

points are now under preparation.

The moment procedure is straightforward and rather

general. In the case of the example in Section V, with the

choice of the expansion and testing functions there, it

reduces to the familiar mode-matching technique. In a

recent publication [9], Safavi-Naini and MacPhie deter

mined the scattering matrix for the junction configuration

of the example in Section V by employing the principles of

conservation of complex power and mode matching across

the junction. Apart from multiplying factors due to the

mode normalization used in the moment procedure, the

scattering matrices obtained are identical. In Section III,

the principle of conservation of complex power across the

junction was seen to be preserved under its generalized

network representation. As a matter of fact, the complex

power technique can be regarded as a specialization of the

moment procedure; and is probably better viewed in this

context.
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Dielectrically Loaded
Waveguide: Variational

Nonstandard Eigenproblem

ISMO V. LINDELL, SENIOR MEMBER, IEEE, AND ARI H. SIHVOLA, STUDENT MEMBER, IEEE

4s&act —Motivated by simple fabricabifity, the dielectricafly loaded
corrugated wavegnide is ansdyzedapplying the theory of nonstandard
eigenvahresand variational principles recently presented by one of the
authors. The eigenvafue parameter of tfds problem is the boundary suseep-

tance of the corrugated surface, which choice is seen to lead to a simple
functional. The functional is tested for the air-filled corrugated guide, and

good accuracy for simple test functions is observed. D@ersion relation for

the loaded corrugated guide is cafcnfated together with the field pattern for

quasi-bafanced operation and estimates for the dielectric loss. The method

presented here afso appears to be applicable in other waveguide problems

where inhomogersecmsmateriaf is involved.

I. INTRODUCTION

T ‘HE CORRUGATED WAVEGUIDE has proven use-

ful for different slow-wave structure applications and

for radiating systems requiring rotational symmetry of the

power radiation pattern [1]. One of the drawbacks of the

corrugated structure is its tedious and costly fabrication. A

new method of fabrication was, however, recently sug-

gested by Tiuri, 1 which is quite simple: A dielectric rod is

put in a lathe, thin grooves are made on the outside, and

the outer surface is metallized. To reduce losses, a hole can

Manuscript received August 5, 1982; revised February 17, 1983.
The authors are with the Electrical Engineering Department, Helsinki

University of Technology, Otakaari 5A, Espoo 15, Finlaud 02150.
1Helsinki University of Technology, Finland.

Corrugated
Analysis of a

be drilled on the axis and we have a dielectrically loaded

corrugated waveguide. We are concerned here about the

analysis of such a structure.

The conventional air-filled corrugated waveguide can be

conveniently analyzed in terms of special functions for the

circular cylindrical geometry. The additional dielectric in-

terface, however, makes this approach very complicated.

So, a variational method is attempted instead. The eigen-

value problem, however, is not of the standard from Lf =
M4f, Bf = 0, but of the more general form L(X)f = O,
B(A) f = O, i.e., the eigenvalue parameter X does not appear

in the differential equation system in linear form, and it

might also be present in the boundary conditions. This

more general form of an eigenvalue problem was called a

nonstandard eigenvalue problem in recent studies [2], [3],

where a variational principle for such problems was also

formulated. This method will be applied here. The eigen-

value parameter may be chosen freely among all the

parameters of the problem. A stationary functional results

if the following functional equation can be solved for the

eigenvalue parameter A:

(f, L(~) f)+(f, B(X) f), =O (1)

where the inner products (”, . ),(., -)~ are defined in the

domains of the operators L and B, respectively.
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